## 244. Nucleophilic Addition to C, C-Double Bonds

Part VIII<sup>1</sup>)

# The Standard Enthalpies of Formation of *anti*<sup>9, 10</sup>-10*endo*-Hydroxytricyclo [4.2.1.1<sup>2, 5</sup>]deca-3, 7-dien-9-one and 9-Oxatetracyclo [5.4.0.0<sup>3, 10</sup>.0<sup>4, 8</sup>]undec-5-en-2-one and Kinetic Data for the Cyclization of the Olefinic Alcohol to the Ether

by Alan A. Smeaton and William V. Steele\*

Department of Chemistry, University of Stirling, Stirling FK9 4LA, Scotland

and Gerardo M. Ramos Tombo and Camille Ganter\*

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, ETH-Zentrum, Universitätsstrasse 16, CH-8092 Zürich

(16.VIII.83)

## Summary

In view of the significance of steric compression in the base-catalyzed intramolecular cyclization of polycyclic olefinic alcohols, the standard enthalpies of formation of  $anti^{9,10}$ -10 endo-hydroxytricyclo [4.2.1.1<sup>2,5</sup>]deca-3, 7-dien-9-one (1) and 9-oxatetracy-clo [5.4.0.0<sup>3,10</sup>.0<sup>4,8</sup>]undec-5-en-2-one (2) as well as the kinetics of the ether formation  $1 \rightarrow 2$  were determined.

Introduction. – The structurally enforced close proximity of the reacting centers is the predominant factor for the observed ability of polycyclic olefinic alcohols and amines of type **a** to undergo intramolecular cyclization by nucleophilic attack of the heteroatom on the unactivated C, C-double bond (bearing no electron-attracting groups).



Continuing our studies on the influence of steric compression we have determined the gas-phase standard enthalpies of formation of the olefinic alcohol 1 and the corre-

<sup>&</sup>lt;sup>1</sup>) For Part VII, see [1].

sponding ether 2 as well as the kinetics, the activation parameters, and the solvent isotope effect for the selected ether formation  $1 \rightarrow 2^2$ ).



**Results.** – a) *Thermochemistry*. Results of typical combustion experiments for each compound 1 and  $2^3$ ) are summarized in *Table 1*. It is impracticable to list details for all experiments, but values of  $\Delta U_c^0/M$ , the specific energy of the idealized combustion reaction, for all experiments are given in *Table 2*. In each case the combustion reaction is represented by *Equation 1*.

$$C_{10}H_{10}O_2 (cr) + (23/2) O_2 (g) = 10 CO_2 (g) + 5 H_2O (l)$$
 (1)

Derived values of the standard molar energy of combustion  $\Delta U_c^0$ , the standard molar enthalpy of combustion  $\Delta H_c^0$ , and the standard enthalpy of formation  $\Delta H_i^0$ , are given in *Table 3* for both compounds 1 and 2 in the condensed state. The uncertainties

Table 1. Summary of Typical Calorimetric Experiments at 298.15 K. The symbols and abbreviations are those of [4] except as noted.

| Compound                   | <i>m</i> (compound)<br>[g] | m (cotton)<br>[g] | ⊿R<br>[Ω]  | $-\varDelta R\varepsilon (\text{calor})^{a})$ [kJ] | $-\Delta R \varepsilon$ (cont)<br>[kJ] | ⊿U <sub>w</sub> b)<br>[kJ]  | ⊿U (ign)<br>[kJ] | $-\Delta u_c^0$ (compound)<br>[kJ · g <sup>-1</sup> ] |
|----------------------------|----------------------------|-------------------|------------|----------------------------------------------------|----------------------------------------|-----------------------------|------------------|-------------------------------------------------------|
| 1                          | 0.051741                   | 0.001046          | 1.79532    | 1.6717                                             | 0.0052                                 | 0.0011                      | 0.0015           | 32.0303                                               |
| 2                          | 0.055081                   | 0.001565          | 1.89062    | 1.7604                                             | 0.0054                                 | 0.0011                      | 0.0011           | 31.5569                                               |
| $a$ ) $\varepsilon$ (calor | ) denotes the end          | ergy equivale     | ent of the | calorimeter: (93)                                  | $1.12 \pm 0.35$ ) J ·                  | $\boldsymbol{\Omega}^{-1}.$ |                  |                                                       |
| <sup>b</sup> ) Items 8     | 1-85, 87-90, 93,           | and 94 of t       | he compu   | tational form of                                   | ref. [5], correc                       | tion to s                   | tandard st       | ates.                                                 |

| Compound | $-\Delta u_{c}^{0}(\text{compound})$<br>[kJ · g <sup>-1</sup> ] | $\frac{-\Delta u_{\rm c}^0(\text{compound})}{[\text{kJ}\cdot\text{g}^{-1}]}$ | Mean    | Standard deviation |
|----------|-----------------------------------------------------------------|------------------------------------------------------------------------------|---------|--------------------|
| 1        | 32.0385                                                         | 32.0048                                                                      | 32.0238 | 0.0077             |
|          | 32.0058                                                         | 32.0303                                                                      |         |                    |
|          | 32.0394                                                         |                                                                              |         |                    |
| 2        | 31.5490                                                         | 31.5572                                                                      | 31.5559 | 0.0024             |
|          | 31.5605                                                         | 31.5569                                                                      |         |                    |

<sup>2</sup>) For qualitative studies on the reaction  $1 \rightarrow 2$  see [2].

<sup>3</sup>) For earlier determinations of the standard enthalpies of formation of bridged ring molecules, see [3] and ref. cit. therein.

Table 3. Derived Molar Values for the Condensed State at 298.15 K

| $-\Delta U_{\rm c}^0$ [kJ · mol <sup>-1</sup> ] | $-\Delta H_{\rm c}^0  [{\rm kJ} \cdot {\rm mol}^{-1}]$                                 | $-\Delta H_{\rm f}^0  [\rm kJ \cdot mol^{-1}]$                                                                                                                   |  |
|-------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $5193.91 \pm 3.0$                               | $5197.6 \pm 3.0$                                                                       | $166.65 \pm 3.0$                                                                                                                                                 |  |
| $5118.02 \pm 1.2$                               | $5121.74 \pm 1.2$                                                                      | $242.5 \pm 1.5$                                                                                                                                                  |  |
|                                                 | $\frac{-\Delta U_{\rm c}^{0}  [\rm kJ \cdot mol^{-1}]}{5193.91 \pm 3.0}$ 5118.02 ± 1.2 | $\frac{-\Delta U_{c}^{0} [\text{kJ} \cdot \text{mol}^{-1}]}{5193.91 \pm 3.0} \qquad \frac{-\Delta H_{c}^{0} [\text{kJ} \cdot \text{mol}^{-1}]}{5121.74 \pm 1.2}$ |  |

attributed to the final results in *Table 3* are twice the standard error of the mean and include the uncertainties in the calibrations and subsidiary experiments. Using the values [6]  $\Delta H_{f}^{0}(CO_{2}, g) = -393.51 \text{ kJ} \cdot \text{mol}^{-1}$  and  $\Delta H_{f}^{0}(H_{2}O, 1) = -285.83 \text{ kJ} \cdot \text{mol}^{-1}$ , we calculate the following standard enthalpies of formation:  $\Delta H_{\rm f}^0(C_{10}H_{10}O_2)$ , alcohol 1, cr) = -(166.65 ± 3.0) kJ · mol<sup>-1</sup> and  $\Delta H_f^0(C_{10}H_{10}O_2, \text{ ether } 2, cr) = -(242.5 \pm 1.5)$  $kJ \cdot mol^{-1}$ .

The standard molar enthalpies of sublimation of the alcohol 1 and the ether 2 were obtained by fitting the values in Table 8 (see Exper. Part) by least squares to

$$R \cdot \ln(p/[\text{Pa}]) = -\Delta G^0_{\text{sub}}/\theta + \Delta H^0_{\text{sub}}(\theta^{-1} - T^{-1})$$
<sup>(2)</sup>

where  $\theta$  is 298.15 K and  $\Delta G_{sub}^0$  and  $\Delta H_{sub}^0$  are the standard molar *Gibbs* energy and the molar enthalpy of sublimation at temperature  $\theta$ . Equation 2 is a simplified version of the equation derived in reference [7]. The results are summarized in Table 4.

Table 5 lists the calculated and observed gas-phase enthalpies of formation for both the alcohol 1 and the ether 2. The calculated values were obtained using the MM2 modification of the alcohol force-field of Allinger & Chung [8].

b) Kinetics. The reaction rate for the cyclization  $1 \rightarrow 2$  in t-BuOK/t-BuOH was measured in the temperature range of 20-80 °C and the activation parameters calculated thereof applying the Arrhenius relation by means of linear regression. The solvent

| J Sublimation at 290.15 K                       |  |
|-------------------------------------------------|--|
| $\Delta H_{\rm sub}^0  [\rm kJ \cdot mol^{-1}]$ |  |
| $(103.0 \pm 1.5)$                               |  |
| $(96.0 \pm 1.5)$                                |  |
|                                                 |  |

Table 4. Standard Molar Gibbs Energies and Molar Enthalpies of Sublimation at 208 15 K

| Table 5. Calculated and Obse | erved Standard Molar | Enthalpies of Formation |
|------------------------------|----------------------|-------------------------|
|                              |                      | 1 5                     |

| Compound | $\Delta H_{\rm f}^0 \text{ (g) } [\rm kJ \cdot \rm mol^{-1}]$ |                    |  |
|----------|---------------------------------------------------------------|--------------------|--|
|          | calculated                                                    | observed           |  |
| 1        | - 61.9                                                        | $-(63.65 \pm 3.4)$ |  |
| 2        | -145.2                                                        | $-(146.5 \pm 2.1)$ |  |

| $k_{\rm B}$ (at 20.5°)<br>[s <sup>-1</sup> · mol <sup>-1</sup> · kg]                | $k_{\rm ROH}/k_{\rm ROD}$ (at 30°) | $E_a^{a}$ )<br>[kJ · mol <sup>-1</sup> ] | $A^{a}$ )<br>[s <sup>-1</sup> ] | $\Delta H^{\pm b})$<br>[kJ · mol <sup>-1</sup> ] | $\frac{\Delta S^{\pm b}}{[\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathrm{mol}^{-1}]}$ | $\Delta G^{\pm b})$ [kJ · mol <sup>-1</sup> ] |
|-------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|---------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------|
| $2.2 \pm 0.3 \cdot 10^{-3}$                                                         | 1.7                                | 108.4                                    | $5.5 \cdot 10^{16}$             | 105.9                                            | 67.4                                                                                  | 86.2                                          |
| <ul> <li><sup>a</sup>) Correlation:</li> <li><sup>b</sup>) Calculated fr</li> </ul> | 0.959. rom $E_a$ and $A$ according | ng to [9].                               |                                 |                                                  |                                                                                       |                                               |

Table 6. Kinetic Data for the Reaction  $1 \rightarrow 2$  in t-BuOK/t-BuOH

isotope effect  $k_{\text{ROH}}/k_{\text{ROD}}$  was measured in *t*-BuOK/*t*-BuOH and *t*-BuOK/*t*-BuOD, respectively. The results are listed in *Table 6*.

**Discussion.** – The cyclization  $1 \rightarrow 2$  implies a nucleophilic attack of an alkoxide anion on an isolated C, C-double bond and is an example for the observed base-catalyzed ether formation in polycyclic alcohols of type **a** (Z = OH).

Steric compression alone (**a**, Y = H, H) or in combination with electronic effects (**a**, Y = O) is responsible for this uncommon reactivity. Increasing the steric compression in olefinic alcohols (**a**,  $R = CH_3 vs$ . R = H and/or  $X = CH_2CH_2 vs$ .  $X = CH_2CH_2CH_2$ ) always enhances significantly the reaction rate<sup>4</sup>). For the ether formation  $1 \rightarrow 2$  both, proximity and homoconjugative effects are the driving forces [2].

The observed  $\Delta$  ( $\Delta H_{f}^{0}$ )-values for the alcohol 1 and the ether 2 for the gas and the solid phase are very similar (-82.85 and -75.85 kJ · mol<sup>-1</sup>, respectively) and can, at least in part, be correlated with the strain release upon cyclization.

The reaction  $1 \rightarrow 2$  exhibits second-order kinetics (first-order with respect to the alcohol 1 as well as to the base) and a half-life time of *ca*. 5 min at room temperature in 1 molal *t*-BuOK/*t*-BuOH. The addition of the OH group on the C, C-double bond occurs stereoselectively as shown by an experiment in *t*-BuOK/*t*-BuOD ( $\rightarrow$ 3): one D-atom is incorporated at C(11) from the *exo*-side.

The small solvent isotope effect  $k_{\text{ROH}}/k_{\text{ROD}} = 1.7$  (in *t*-BuOK/*t*-BuOH and *t*-BuOK/ *t*-BuOD, respectively, at 30°) together with the positive value of  $\Delta S^{+}$  (67.4 J · K<sup>-1</sup> · mol<sup>-1</sup>) are compatible with an addition mechanism formally corresponding to the reverse of a  $E_1$ cB elimination [10].

Financial support by the Swiss National Science Foundation and by Ciba-Geigy AG, Basel, is gratefully acknowledged.

#### **Experimental Part**

*General.* Compounds 1–3 are described in [2]. For thermochemical measurements, 1 and 2 were purified by column chromatography on silica gel in cyclohexane/AcOEt 1:1 and pentane/Et<sub>2</sub>O 1:1, respectively, followed by sublimation: 1 at  $65^{\circ}/10^{-3}$  Torr and 2 at  $60^{\circ}/10^{-3}$  Torr.

Thermochemistry. The bomb calorimeter (internal volume 0.021 dm<sup>3</sup>), its calibration, and the auxiliary equipment will be described [11]. It has previously been used in a thermochemical study of tri(*tert*-bu-tyl)methanol [12]. The calorimeter was calibrated using 0.06 cm<sup>3</sup> of H<sub>2</sub>O initially in the bomb and an internal O<sub>2</sub> pressure of 3.0 MPa at 298.15 K. The bomb was flushed with O<sub>2</sub> before charging to the stated pressure. The standard energy of combustion and empirical formula of the cotton fuse were 16.240 kJ  $\cdot$  g<sup>-1</sup> and CH<sub>1.8</sub>O<sub>0.9</sub>, respectively.

The experimental results are based on 1975 atomic weights [13]. For reducing weighings in air to masses, converting the energy of the actual bomb process to that of the isothermal process, and reducing to standard states [5], the values in *Table 7* were used for the density  $\rho$ , specific heat capacity  $c_p$ , and  $(\delta u/\delta p)_T$ . All densities were experimentally determined. Heat capacities were measured on the d.s.c. using sapphire as a standard [14]. All other values of physical properties are estimates.

The combustion products were examined for CO (*Winkler*'s reagent) and unburnt C, but neither was detected. No HNO<sub>3</sub> or HNO<sub>2</sub> were formed during the series of combustions [15].

The torsion-effusion and mass-loss-effusion apparatus used for vapour-pressure measurements in the tri(*tert*-butyl)methanol work [12] has been used here to determine the temperature dependence of the vapour

<sup>&</sup>lt;sup>4</sup>) Detailed kinetic studies about the influence of steric compression and homoconjugative effects on the cyclization rates for compounds of type **a** are subject of a forthcoming paper.

| Compound | M [g · mol <sup>-1</sup> ] | $\rho$ [ $ m e \cdot cm^{-3}$ ] | $-(\delta u/\delta p)_T$<br>[I · $\sigma^{-1}$ · kPa <sup>-1</sup> ] | $c_p$<br>[I · $\sigma^{-1}$ · K <sup>-1</sup> ] |
|----------|----------------------------|---------------------------------|----------------------------------------------------------------------|-------------------------------------------------|
| Cotton   | 28.22                      | 1.5                             | negligible                                                           | 1.67                                            |
| 1        | 162.189                    | 1.35                            | (0.003)                                                              | 1.42                                            |
| 2        | 162.189                    | 1.4                             | (0.003)                                                              | 1.32                                            |

Table 7. Physical Properties at 298.15 K. Values in parentheses are estimates.

Table 8. Variation of Vapour Pressure with Temperatur

| Alcohol 1: | T [K]  | 294.0 | 298.5 | 307.0 | 310.3 | 312.4 |
|------------|--------|-------|-------|-------|-------|-------|
|            | p [Pa] | 0.05  | 0.09  | 0.30  | 0.47  | 0.59  |
| Ether 2:   | T [K]  | 295.0 | 298.0 | 305.0 | 307.0 | 310.0 |
|            | p [Pa] | 0.08  | 0.12  | 0.29  | 0.36  | 0.54  |

pressure of both the alcohol 1 and the ether 2. Collision diameters of 700 pm (1) and 650 pm (2) were used in the calculation of the vapour pressures.

The calculated values of p (torsion) and p (mass loss) agreed well (ratio:  $1.00 \pm 0.03$  in both cases) assuming a monomeric molar mass for the effusing molecules. *Table 8* gives a representative set of calculated pressures and their corresponding temperatures for both the alcohol 1 and the ether 2.

*Kinetics.* A *ca.* 1:1 mixture of 1 and naphthalene as internal standard was dissolved (*ca.* 0.1 mmol/ml) under Ar in abs. *t*-BuOH and thermostated in a water bath. The reaction was started by injection of a thermostated *t*-BuOK/*t*-BuOH solution. The samples were taken every 3 min, quenched with ice/H<sub>2</sub>O and extracted with pentane. The org. layer was analyzed by capillary GLC using a *Carlo-Erba Fractovap 4160* gas chromatograph equipped with a *UCON 50 HB 5100* glass capillary column (25 m/0.33 mm) and a *Hewlett-Packard 3390 A* integrator. The extraction and analysis procedure was calibrated (error limit  $< \pm 1\%$ ) by using mixtures of 1, 2, and naphthalene of known compositions.

### REFERENCES

- [1] G. M. Ramos Tombo, H.J. Ammann, K. Müller & C. Ganter, Helv. Chim. Acta 66, 50 (1983).
- [2] R.A. Pfund & C. Ganter, Helv. Chim. Acta 62, 228 (1979).
- [3] W. V. Steele, J. Chem. Thermodyn. 12, 187 (1980).
- [4] W. V. Steele, J. Chem. Thermodyn. 9, 311 (1977).
- [5] W.N. Hubbard, D.W. Scott & G. Waddington, in 'Experimental Thermochemistry', vol.1, chap.5, F.D. Rossini, ed., Interscience, New York 1965.
- [6] CODATA, Key values for thermodynamics 1975, J. Chem. Thermodyn. 8, 603 (1976).
- [7] E.C.W. Clarke & D.N. Glew, Trans. Faraday Soc. 62, 539 (1966).
- [8] a) N. L. Allinger & D. Y. Chung, J. Am. Chem. Soc. 98, 6798 (1976); b) N. L. Allinger, ibid. 99, 8127 (1977).
- [9] R. W. Hoffmann, «Aufklärung von Reaktionsmechanismen», Georg Thieme Verlag, Stuttgart 1976.
- [10] H.F. Koch, W. Tumas & R. Knoll, J. Am. Chem. Soc. 103, 5423 (1981).
- [11] W. V. Steele, in preparation.
- [12] H. Maskill & W.V. Steele, J. Chem. Thermodyn. 15, 481 (1983).
- [13] IUPAC, Commission on Atomic Weights 1975, Pure Appl. Chem. 47, 45 (1976).
- [14] E. M. Barrall & J. K. Johnson, Tech. Meth. Polym. Eval. 2, 1 (1970).
- [15] W. Parker, W.V. Steele, W. Stirling & I. Watt, J. Chem. Thermodyn. 7, 795 (1975).